A237619 Riordan array (1/(1+x*c(x)), x*c(x)) where c(x) is the g.f. of Catalan numbers (A000108).
1, -1, 1, 0, 0, 1, -1, 1, 1, 1, -2, 2, 3, 2, 1, -6, 6, 8, 6, 3, 1, -18, 18, 24, 18, 10, 4, 1, -57, 57, 75, 57, 33, 15, 5, 1, -186, 186, 243, 186, 111, 54, 21, 6, 1, -622, 622, 808, 622, 379, 193, 82, 28, 7, 1, -2120, 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 0, 0, 1; -1, 1, 1, 1; -2, 2, 3, 2, 1; -6, 6, 8, 6, 3, 1; -18, 18, 24, 18, 10, 4, 1; -57, 57, 75, 57, 33, 15, 5, 1; Production matrix begins: -1, 1; -1, 1, 1; -1, 1, 1, 1; -1, 1, 1, 1, 1; -1, 1, 1, 1, 1, 1; -1, 1, 1, 1, 1, 1, 1; -1, 1, 1, 1, 1, 1, 1, 1; -1, 1, 1, 1, 1, 1, 1, 1, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
A065602[n_, k_]:= A065602[n, k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n - j) -k-1), {j,0,(n-k)/2}]; T[n_, k_]:= If[k==0, A065602[n, 0], If[n==1 && k==1, 1, A065602[n, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 27 2022 *)
-
SageMath
def A065602(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) ) def A237619(n, k): if (n<2): return (-1)^(n-k) elif (k==0): return A065602(n, 0) else: return A065602(n, k) flatten([[A237619(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2022