A237639 Numbers n = p^4-p^3-p^2-p-1 (for prime p) such that n^4-n^3-n^2-n-1 is prime.
41, 56133395601, 89362058601, 590884122501, 1275627652881, 2775672202617, 6212311361721, 7534036143501, 27344792789601, 61180709716101, 124857759197601, 206926840439901, 580608824590341, 603653936046501, 1442441423278281, 1864059458505657
Offset: 1
Keywords
Examples
41 = 3^4-3^3-3^2-3^1-1 (3 is prime) and 41^4-41^3-41^2-41^1-1 = 2755117 is prime. So, 41 is a member of this sequence.
Crossrefs
Cf. A125082.
Programs
-
PARI
s=[]; forprime(p=2, 7000, n=p^4-p^3-p^2-p-1; if(isprime(n^4-n^3-n^2-n-1), s=concat(s, n))); s \\ Colin Barker, Feb 11 2014
-
Python
import sympy from sympy import isprime def poly4(x): if isprime(x): f = x**4-x**3-x**2-x-1 if isprime(f**4-f**3-f**2-f-1): return True return False x = 1 while x < 10**5: if poly4(x): print(x**4-x**3-x**2-x-1) x += 1
Comments