A237642 Primes of the form n^2-n-1 (for some n) such that p^2-p-1 is also prime.
5, 11, 29, 71, 131, 181, 379, 419, 599, 1979, 2069, 3191, 4159, 13339, 14519, 17291, 19739, 20879, 21169, 26731, 30449, 31151, 39799, 48619, 69959, 70489, 112559, 122849, 132859, 139501, 149381, 183611, 186191, 198469, 212981, 222311, 236681
Offset: 1
Keywords
Examples
11 is prime and equals 4^2-4-1, and 11^2-11-1 = 109 is prime. So, 11 is a member of this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Table[n^2-n-1,{n,500}],AllTrue[{#,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Feb 27 2023 *)
-
PARI
s=[]; for(n=1, 1000, p=n^2-n-1; if(isprime(p) && isprime(p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Feb 11 2014
-
Python
import sympy from sympy import isprime {print(n**2-n-1) for n in range(10**3) if isprime(n**2-n-1) and isprime((n**2-n-1)**2-(n**2-n-1)-1)}
Comments