cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237647 G.f. satisfies: A(x) = (1 + x + x^2)^7 * A(x^2)^4.

Original entry on oeis.org

1, 7, 56, 273, 1463, 6048, 26537, 97903, 377384, 1281497, 4502463, 14322560, 46849089, 141332583, 436556440, 1259742225, 3710541975, 10308494560, 29165172617, 78396244591, 214217633672, 559335671353, 1482519853311, 3772127020032, 9731443674113, 24191903115079, 60918829766648
Offset: 0

Views

Author

Paul D. Hanna, May 04 2014

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 56*x^2 + 273*x^3 + 1463*x^4 + 6048*x^5 + 26537*x^6 +...
where:
A(x) = (1+x+x^2)^7 * (1+x^2+x^4)^28 * (1+x^4+x^8)^112 * (1+x^8+x^16)^448 * (1+x^16+x^32)^896 *...* (1 + x^(2^n) + x^(2*2^n))^(7*4^n) *...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)^7*subst(A^4,x,x^2) +x*O(x^n));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(7*4^k));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

The odd-indexed bisection of A237646.
The 7th self-convolution of A237648.
G.f. A(x) satisfies:
(1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(7*4^n).
(2) A(x) / A(-x) = (1+x+x^2)^7 / (1-x+x^2)^7.