cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237648 G.f. satisfies: A(x) = (1 + x + x^2) * A(x^2)^4.

Original entry on oeis.org

1, 1, 5, 4, 30, 26, 106, 80, 459, 379, 1451, 1072, 5210, 4138, 14894, 10756, 47617, 36861, 127949, 91088, 376264, 285176, 957336, 672160, 2640964, 1968804, 6452260, 4483456, 16921416, 12437960, 39873688, 27435728, 100259070, 72823342, 229410006, 156586664, 556880812, 400294148
Offset: 0

Views

Author

Paul D. Hanna, May 03 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 4*x^3 + 30*x^4 + 26*x^5 + 106*x^6 + 80*x^7 + 459*x^8 +...
such that A(x) = (1+x+x^2) * A(x^2)^4, where:
A(x)^4 = 1 + 4*x + 26*x^2 + 80*x^3 + 379*x^4 + 1072*x^5 + 4138*x^6 + 10756*x^7 +...
The g.f. may thus be expressed by the product:
A(x) = (1+x+x^2) * (1+x^2+x^4)^4 * (1+x^4+x^8)^16 * (1+x^8+x^16)^64 *...
Note that x*A(x^2)^7 is the odd bisection of the g.f. G(x) of A237646:
A(x)^7 = 1 + 7*x + 56*x^2 + 273*x^3 + 1463*x^4 + 6048*x^5 + 26537*x^6 + 97903*x^7 +...+ A237647(n)*x^n +...
G(x) = (1+x+x^2)*A(x^2)^7 = 1 + x + 8*x^2 + 7*x^3 + 63*x^4 + 56*x^5 + 329*x^6 + 273*x^7 + 1736*x^8 + 1463*x^9 + 7511*x^10 + 6048*x^11 +...+ A237646(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)*subst(A^4,x,x^2) +x*O(x^n));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(4^k));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

The 7th self-convolution yields A237647.
G.f. A(x) satisfies:
(1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(4^n).
(2) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2).
Bisections: let A(x) = B(x^2) + x*C(x^2), then
(3) B(x) = (1+x) * C(x).
(4) C(x) = A(x)^4 = (1+x+x^2)^4 * C(x^2)^4.