cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237663 Odd numbers m such that the order of 2 mod m^3 is less than m times the order of 2 mod m^2.

Original entry on oeis.org

57, 111, 219, 285, 327, 399, 489, 505, 543, 555, 597, 627, 741, 777, 813, 969, 1083, 1095, 1137, 1221, 1255, 1299, 1311, 1379, 1425, 1443, 1461, 1467, 1515, 1533, 1569, 1623, 1635, 1653, 1731, 1767, 1839, 1887, 1893, 1995, 2005, 2109, 2271, 2289, 2337, 2409, 2433, 2445, 2451, 2487, 2553, 2649, 2679, 2715, 2757, 2775, 2793, 2811, 2847, 2973, 2985, 3005, 3021, 3027, 3135, 3189, 3219, 3351, 3363, 3423, 3437, 3441, 3459, 3477, 3505, 3513
Offset: 1

Views

Author

Keywords

Comments

These numbers m are a subset of the {A182297} Wieferich numbers (2).
All known numbers m are composite. A prime p satisfies this inequality if and only if the order of 2 mod p^3 is the order of 2 mod p, which is equivalent to p^3 dividing 2^(p-1)-1, but no such prime p are known (as opposed to the A001220 Wieferich primes).

Crossrefs

Programs

  • Mathematica
    okQ[m_] := MultiplicativeOrder[2, m^3] < m*MultiplicativeOrder[2, m^2]; Select[Range[1, 9999, 2], okQ] (* Jean-François Alcover, Dec 10 2015 *)
  • PARI
    is(m)=m%2 && znorder(Mod(2, m^3)) < m*znorder(Mod(2, m^2))

Formula

Odd numbers m such that A002326((m^3-1)/2) < m * A002326((m^2-1)/2).
Odd numbers m such that 1 < gcd(A165781((m-1)/2), m) is a square.