A237665 Number of partitions of n such that the distinct terms arranged in increasing order form a string of two or more consecutive integers.
0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 11, 16, 17, 24, 27, 35, 39, 50, 57, 70, 79, 97, 111, 132, 150, 178, 204, 239, 271, 316, 361, 416, 472, 545, 618, 706, 800, 912, 1032, 1173, 1320, 1496, 1687, 1902, 2137, 2410, 2702, 3034, 3398, 3808, 4258, 4765, 5313, 5932, 6613
Offset: 0
Examples
The qualifying partitions of 8 are 332, 3221, 32111, 22211, 221111, 2111111, so that a(8) = 6. (The strings of distinct parts arranged in increasing order are 23, 123, 123, 12, 12, 12.)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Shane Chern (Xiaohang Chen), On a conjecture of George Beck. II, 2018.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, `if`(n=0 and t=2 or n>0 and t>0, 1, 0), `if`(i>n, 0, add(b(n-i*j, i-1, min(t+1, 2)), j=1..n/i))) end: a:= n-> add(b(n, i, 0), i=1..n): seq(a(n), n=0..60); # Alois P. Heinz, Feb 15 2014
-
Mathematica
Map[Length[Select[Map[Differences[DeleteDuplicates[#]] &, IntegerPartitions[#]], (Table[-1, {Length[#]}] == # && # =!= \{}) &]] &, Range[55]] (* Peter J. C. Moses, Feb 09 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n==0 || i==1, If[n==0 && t==2 || n>0 && t > 0, 1, 0], If[i>n, 0, Sum[b[n-i*j, i-1, Min[t+1, 2]], {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 17 2015, after Alois P. Heinz *)
Formula
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jan 28 2022
Comments