A237666 Number of partitions of n that include a pair of consecutive integers.
0, 0, 0, 1, 1, 3, 3, 7, 9, 15, 20, 32, 40, 61, 78, 112, 142, 199, 250, 341, 428, 568, 710, 930, 1151, 1486, 1835, 2334, 2868, 3615, 4413, 5513, 6706, 8298, 10052, 12359, 14895, 18195, 21857, 26526, 31747, 38337, 45702, 54923, 65272, 78062, 92481, 110168, 130089
Offset: 0
Examples
The qualifying partitions of 8 are 521, 431, 332, 421, 3221, 32111, 22211, 221111, 2111111, so that a(8) = 9.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(g(n-i*j, i-1), j=0..n/i))) end: b:= proc(n, i, l) option remember; `if`(n=0 or i<1, 0, b(n, i-1, 0) +add(`if`(i+1=l, g(n-i*j, i-1), b(n-i*j, i-1, i)), j=1..n/i)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Feb 14 2014
-
Mathematica
Map[Length[Cases[Map[Differences[DeleteDuplicates[#]] &, IntegerPartitions[#]], {_, -1, _}]] &, Range[50]] (* Peter J. C. Moses, Feb 09 2014 *) g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_, l_] := b[n, i, l] = If[n==0 || i<1, 0, b[n, i-1, 0] + Sum[If[i+1 == l, g[n-i*j, i-1], b[n-i*j, i-1, i]], {j, 1, n/i}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Jan 28 2022