cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237666 Number of partitions of n that include a pair of consecutive integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 7, 9, 15, 20, 32, 40, 61, 78, 112, 142, 199, 250, 341, 428, 568, 710, 930, 1151, 1486, 1835, 2334, 2868, 3615, 4413, 5513, 6706, 8298, 10052, 12359, 14895, 18195, 21857, 26526, 31747, 38337, 45702, 54923, 65272, 78062, 92481, 110168, 130089
Offset: 0

Views

Author

Clark Kimberling, Feb 11 2014

Keywords

Examples

			The qualifying partitions of 8 are 521, 431, 332, 421, 3221, 32111, 22211, 221111, 2111111, so that a(8) = 9.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(g(n-i*j, i-1), j=0..n/i)))
        end:
    b:= proc(n, i, l) option remember; `if`(n=0 or i<1, 0,
           b(n, i-1, 0) +add(`if`(i+1=l, g(n-i*j, i-1),
           b(n-i*j, i-1, i)), j=1..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 14 2014
  • Mathematica
    Map[Length[Cases[Map[Differences[DeleteDuplicates[#]] &, IntegerPartitions[#]], {_, -1, _}]] &, Range[50]]  (* Peter J. C. Moses, Feb 09 2014 *)
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_, l_] := b[n, i, l] = If[n==0 || i<1, 0, b[n, i-1, 0] + Sum[If[i+1 == l, g[n-i*j, i-1], b[n-i*j, i-1, i]], {j, 1, n/i}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Jan 28 2022
Conjecture: for n > 0, a(n) = A000041(n) - A116931(n). - Vaclav Kotesovec, Jan 28 2022