cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237684 a(n) = floor(n*prime(n) / Sum_{i<=n} prime(i)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Feb 21 2014

Keywords

Comments

a(n) = 1 for n = 8 and 1 <= n <= 6.
a(n) = 2 for n = 7 and 9 <= n < 10^11 (verified terms).
Conjectures:
(1): a(n) = 1 or 2 for all n.
(2): sequence of numbers n sorted by decreasing values of function f(n) = n*prime(n) / Sum_{i<=n} prime(i): 48, 35, 31, 25, 17, 49, 33, 69, 32, 26, 43, 38, 12, 63, 102, 67, 68, 37, ... The last term of this sequence is 1.
(3): maximal value of function f(n) is for n = 48: f(48) = 10704/4661 = 2.29650289637416...
(4): minimal value of function f(n) is for n = 1: f(1) = 1.

Examples

			a(8) = floor(8*prime(8) / Sum_{i<=8} prime(i)) = floor(8*19 / 77) = 1.
		

Crossrefs

Programs

  • Mathematica
    Block[{$MaxExtraPrecision = 1000, a, t = 0, nn = 120}, Do[(t += #; Set[a[i], Floor[i*#/t]]) &[Prime[i]], {i, nn}]; Array[a, nn] ] (* Michael De Vlieger, Mar 10 2023 *)

Formula

a(n) = floor(A033286(n) / A007504(n)).