cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237706 Number of primes p < n with pi(n-p) a square, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 1, 1, 2, 2, 2, 4, 3, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 3, 4, 4, 4, 4, 6, 5, 4, 4, 2, 2, 3, 3, 5, 5, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 4, 5, 5, 5, 4, 4, 7, 6, 5, 5, 4, 4, 5, 5, 7, 7, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 11 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2, and a(n) = 1 only for n = 3, 5, 6, 7, 8, 16, 17, 22, 23, 148, 149.
(ii) For any integer n > 2, there is a prime p < n with pi(n-p) a triangular number.
We have verified that a(n) > 0 for every n = 3, ..., 1.5*10^7. See A237710 for the least prime p < n with pi(n-p) a square.
See also A237705, A237720 and A237721 for similar conjectures.

Examples

			a(8) = 1 since 7 is prime with pi(8-7) = 0^2.
a(16) = 1 since 7 is prime with pi(16-7) = 2^2.
a(149) = 1 since 139 is prime with pi(149-139) = pi(10) = 2^2.
a(637) = 2 since 409 is prime with pi(637-409) = pi(228) = 7^2, and 613 is prime with pi(637-613) = pi(24) = 3^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    q[n_]:=SQ[PrimePi[n]]
    a[n_]:=Sum[If[q[n-Prime[k]],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,70}]