A237768 Number of primes p < n with pi(n-p) a Sophie Germain prime, where pi(.) is given by A000720.
0, 0, 0, 0, 1, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 1, 1, 3, 3, 5, 5, 2, 2, 1, 1, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 1
Offset: 1
Keywords
Examples
a(5) = 1 since 2, pi(5-2) = pi(3) = 2 and 2*2 + 1 = 5 are all prime. a(12) = 1 since 7, pi(12-7) = pi(5) = 3 and 2*3 + 1 = 7 are all prime. a(81) = 1 since 47, pi(81-47) = pi(34) = 11 and 2*11 + 1 = 23 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
sg[n_]:=PrimeQ[n]&&PrimeQ[2n+1] a[n_]:=Sum[If[sg[PrimePi[n-Prime[k]]],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,80}]
Comments