A237815 Number of primes p < n such that the number of Sophie Germain primes among 1, ..., n-p is a Sophie Germain prime.
0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 5, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, 3, 3, 3
Offset: 1
Keywords
Examples
a(5) = 1 since there are exactly two Sophie Germain primes not exceeding 5-2 = 3, and 2 is a Sophie Germain prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
sg[n_]:=PrimeQ[n]&&PrimeQ[2n+1] sum[n_]:=Sum[If[PrimeQ[2Prime[k]+1],1,0],{k,1,PrimePi[n]}] a[n_]:=Sum[If[sg[sum[n-Prime[k]]],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,80}]
Comments