A237879 Least positive integer k <= n such that the number of twin prime pairs not exceeding k*n is a square, or 0 if such a number k does not exist.
1, 1, 1, 1, 1, 1, 3, 3, 3, 2, 2, 2, 2, 2, 2, 15, 14, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 17, 7, 7, 3, 3, 15, 14, 6, 6, 13, 13, 13, 12, 12, 5, 5, 5, 11, 11, 11, 2, 2, 2, 10, 10, 10, 4, 4, 4, 9, 9, 9, 16, 46, 8, 8, 8, 8, 8, 8, 65, 14, 52, 7, 7, 3, 3, 3, 3
Offset: 1
Examples
a(7) = 3 since there are exactly 2^2 = 4 twin prime pairs not exceeding 3*7 = 21 (namely, {3, 5}, {5, 7}, {11, 13} and {17, 19}), but the number of twin prime pairs not exceeding 1*7 and the number of twin prime pairs not exceeding 2*7 are 2 and 3 respectively, none of which is a square.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
tw[0]:=0 tw[n_]:=tw[n-1]+If[PrimeQ[Prime[n]+2],1,0] SQ[n_]:=IntegerQ[Sqrt[tw[PrimePi[n]]]] Do[Do[If[SQ[k*n-2],Print[n," ",k];Goto[aa]],{k,1,n}]; Print[n," ",0];Label[aa];Continue,{n,1,100}]
Comments