A237754 Number of partitions of n such that 2*(greatest part) > (number of parts).
1, 1, 2, 4, 5, 8, 11, 16, 23, 32, 43, 59, 78, 104, 137, 181, 233, 303, 388, 497, 630, 799, 1003, 1262, 1574, 1961, 2430, 3008, 3701, 4551, 5569, 6805, 8284, 10070, 12195, 14753, 17786, 21413, 25709, 30824, 36856, 44014, 52435, 62384, 74062, 87811, 103901
Offset: 1
Examples
a(5) = 5 counts these partitions: 5, 41, 32, 311, 221.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] > Length[p]], {n, z}]
-
PARI
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(2*k+j-2))/(1-x^j)))) \\ Seiichi Manyama, Jan 25 2022
Formula
G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(2*k+j-2))/(1-x^j). - Seiichi Manyama, Jan 25 2022
Comments