A237755 Number of partitions of n such that 2*(greatest part) >= (number of parts).
1, 2, 2, 4, 6, 9, 12, 18, 24, 34, 46, 63, 83, 111, 144, 190, 245, 318, 405, 520, 657, 833, 1045, 1312, 1634, 2036, 2517, 3114, 3829, 4705, 5751, 7027, 8544, 10381, 12564, 15190, 18301, 22026, 26425, 31669, 37849, 45180, 53796, 63983, 75923, 89987, 106435
Offset: 1
Examples
a(6) = 9 counts all of the 11 partitions of 6 except these: 21111, 111111.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] >= Length[p]], {n, z}]
-
PARI
{a(n) = my(A); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(2*m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)} for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
Formula
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(2*n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015
Comments