A237820 Number of partitions of n such that 2*(least part) < greatest part.
0, 0, 0, 1, 2, 4, 8, 12, 19, 29, 42, 58, 83, 112, 151, 202, 267, 347, 453, 581, 744, 948, 1198, 1505, 1889, 2356, 2925, 3621, 4465, 5486, 6724, 8212, 9999, 12151, 14715, 17784, 21442, 25795, 30952, 37079, 44315, 52871, 62950, 74827, 88767, 105159, 124335
Offset: 1
Examples
a(6) = 4 counts these partitions: 51, 411, 321, 3111.
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
z = 60; q[n_] := q[n] = IntegerPartitions[n]; Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *) Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *) Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *) Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *) Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
-
PARI
A(n) = {concat([0,0,0], Vec(sum(i=1, n, sum(j=1, n-3*i, x^(3*i+j)/prod(k=i, min(n-3*i-j,2*i+j), 1-x^k)))+ O('x^(n+1))))} \\ John Tyler Rascoe, Jun 21 2025
Formula
G.f.: Sum_{i>0} Sum_{j>0} x^(3*i+j) /Product_{k=i..2*i+j} (1 - x^k). - John Tyler Rascoe, Jun 21 2025