A237830 Number of partitions of n such that (greatest part) - (least part) < number of parts.
1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 36, 47, 62, 81, 105, 135, 174, 222, 282, 357, 450, 565, 707, 880, 1093, 1353, 1669, 2052, 2517, 3077, 3753, 4565, 5539, 6704, 8097, 9755, 11730, 14075, 16854, 20142, 24029, 28611, 34009, 40355, 47807, 56542, 66772, 78728
Offset: 1
Examples
a(6) = 8 counts these partitions: 6, 3+3, 4+1+1, 3+2+1, 2+2+2, 3+1+1+1, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..95 from R. J. Mathar)
- George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016.
Programs
-
Mathematica
z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A237830 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A237833 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *)
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*x/(1-x)*sum(k=1, N, (-1)^(k-1)*x^(3*k*(k-1)/2)*(1-x^(2*k)))) \\ Seiichi Manyama, May 20 2023
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * (x/(1-x)) * Sum_{k>=1} (-1)^(k-1) * x^(3*k*(k-1)/2) * (1-x^(2*k)). (See Andrews' preprint.) - Seiichi Manyama, May 20 2023