cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237841 Decimal expansion of Ramanujan's AGM Continued Fraction R(2) = R_1(2,2).

Original entry on oeis.org

9, 7, 4, 9, 9, 0, 9, 8, 8, 7, 9, 8, 7, 2, 2, 0, 9, 6, 7, 1, 9, 9, 0, 0, 3, 3, 4, 5, 2, 9, 2, 1, 0, 8, 4, 4, 0, 0, 5, 9, 2, 0, 2, 1, 9, 9, 9, 4, 7, 1, 0, 6, 0, 5, 7, 4, 5, 2, 6, 8, 2, 5, 1, 2, 8, 5, 8, 7, 7, 3, 8, 7, 4, 5, 5, 7, 0, 8, 5, 9, 4, 3, 5, 2, 3, 2, 5, 3, 2, 0, 9, 1, 1, 1, 2, 9, 3, 6, 2, 5
Offset: 0

Views

Author

Jean-François Alcover, Feb 14 2014

Keywords

Comments

Other closed form evaluations of R(p/q):
R(1/4) = Pi/2 - 4/3,
R(1/3) = 1 - log(2),
R(1/2) = 2 - Pi/2,
R(2/3) = 4 - Pi/sqrt(2),
R(1) = log(2),
R(3/2) = Pi + sqrt(3)*log(2 - sqrt(3)),
R(3) = Pi/sqrt(3) - log(2).

Examples

			0.97499098879872209671990033452921084400592...
		

Crossrefs

Cf. A002162: R(1) = log(2); A180434: R(1/2) = 2-Pi/2.

Programs

  • Mathematica
    RealDigits[Sqrt[2]*(Pi/2 - Log[1 + Sqrt[2]]), 10, 100] // First
  • PARI
    (psi(7/8)-psi(3/8))/2 \\ Charles R Greathouse IV, Mar 03 2016

Formula

Equivalent formulas:
sqrt(2)*(Pi/2 - log(1 + sqrt(2))),
(Pi - 2*arccoth(sqrt(2)))/sqrt(2),
Integral_{x >= 0} sech(Pi*x/4)/(1 + x^2) dx,
2*Integral_{x = 0..1} sqrt(x)/(1 + x^2) dx,
Integral_{x >= 0} exp(-x/2)*sech(x) dx,
4*Sum_{k >= 1} (-1)^(k+1)/(4*k - 1),
1/2*(-psi(3/8) + psi(7/8)), where psi is the digamma function,
4/3 * 2F1(3/4, 1, 7/4, -1), where 2F1 is the hypergeometric function,
(H(-1/8) - H(-5/8))/2, where H(n) is the n-th harmonic number.
General formula:
The Borwein's closed form formula for R(n) with n integer simplifies to:
R(n) = Pi/2*sec(Pi/(2n)) - 2*sum( cos((k*(n+1)*Pi)/(2*n))*log(2*sin((k*Pi)/(4*n))), {k, 1, 2n-1, 2} ).
Equals 4*A181049. - Peter Bala, Apr 02 2024