A237912 Smallest number m (not ending in a 0) such that m and its digit reversal A004086(m) both have n prime factors (counted with multiplicity).
13, 15, 117, 126, 1386, 2576, 21708, 25515, 21168, 46848, 295245, 2937856, 6351048, 21989376, 217340928, 2154281472, 2196652032, 21120051456, 21122906112, 40915058688, 274148425728, 2150086519296, 2707602702336, 6167442456576, 21907217055744, 29798871072768, 420127895977984
Offset: 1
Examples
13 and 31 are both prime so a(1) = 13. 15 and 51 have two prime factors (3*5 and 3*17 respectively), so a(2) = 15.
Programs
-
Python
import sympy from sympy import factorint def rev(x): rev = '' for i in str(x): rev = i + rev return int(rev) def RevFact(x): n = 1 while n < 10**8: if rev(n) != n: if n % 10 != 0: if sum(list(factorint(n).values())) == x: if sum(list(factorint(rev(n)).values())) == x: return n else: n += 1 else: n += 1 else: n += 1 else: n += 1 x = 1 while x < 100: print(RevFact(x)) x += 1
Extensions
a(15)-a(21) from Giovanni Resta, Feb 23 2014
a(22)-a(27) from Max Alekseyev, Feb 07 2024
Comments