A237975 Least nonnegative integer m such that for some k = 1, ..., n there are exactly m^2 twin prime pairs not exceeding k*n.
0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 4, 4, 3, 3, 5, 5, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 3, 3, 3, 5, 5, 5, 4, 4, 4, 5, 5, 5, 6, 9, 5, 5, 5, 5, 5, 5, 11, 6, 10, 5, 5, 4, 4, 4, 4, 5, 11, 9, 8, 9, 6, 10, 5, 5, 5, 5, 5, 5, 5, 5, 8, 11, 11, 7, 8
Offset: 1
Keywords
Examples
a(7) = 2 since there are exactly 2^2 twin prime pairs not exceeding 3*7 = 21 (namely, {3, 5}, {5, 7}, {11, 13} and{17,19}), and the number of twin prime pairs not exceeding 1*7 or 2*7 is not a square. a(18055) = 675 since there are exactly 675^2 = 455625 twin prime pairs not exceeding 5758*18055.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
tw[0]:=0 tw[n_]:=tw[n-1]+If[PrimeQ[Prime[n]+2],1,0] SQ[n_]:=IntegerQ[Sqrt[tw[PrimePi[n]]]] Do[Do[If[SQ[k*n-2],Print[n," ",Sqrt[tw[PrimePi[k*n-2]]]];Goto[aa]],{k,1,n}];Print[n," ",0];Label[aa];Continue,{n,1,100}]
Comments