A237977 Number of strict partitions of n such that (least part) <= number of parts.
0, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 29, 36, 42, 51, 60, 72, 84, 100, 117, 137, 160, 187, 216, 251, 290, 334, 385, 442, 507, 581, 664, 757, 864, 982, 1116, 1266, 1435, 1622, 1835, 2069, 2333, 2626, 2954, 3316, 3724, 4172, 4673, 5227, 5844
Offset: 0
Examples
a(8) = 4 counts these partitions: 71, 53, 521, 431.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]] Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}] (* A237976 *) Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *) Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *) Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}] (* A237979 *) Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
-
PARI
my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^(k*(k+1)/2)*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022
Formula
G.f.: Sum_{k>=0} x^(k*(k+1)/2) * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
Extensions
Prepended a(0)=0, Seiichi Manyama, Jan 13 2022