A238001 Number of partitions of n^n into parts that are at most n with at least one part of each size.
0, 1, 1, 48, 109809, 32796849930, 2555847904495965819, 85962759806610904434664386174, 1841132100297745277187328924904656111127054, 34687813181057391872792859998288408847592250236051615502024
Offset: 0
Keywords
Examples
a(1) = 1: 1. a(2) = 1: 211. a(3) = 48: 3333333321, ..., 321111111111111111111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..27
- A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz), arXiv:1108.4391 [math.CO], 2011.
Programs
-
Mathematica
maxExponent = 50; a[0] = 0; a[1] = 1; a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[n^n-n(n+1)/2 + 1] // Round]; Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 9}] (* Jean-François Alcover, Nov 15 2018 *)
Formula
a(n) = [x^(n^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ n^(n*(n-1)) / (n!*(n-1)!) ~ exp(2*n) * n^(n*(n-3)) / (2*Pi). - Vaclav Kotesovec, Jun 05 2015