A238090 Primes whose hexadecimal representation contains only consonants.
11, 13, 191, 223, 251, 3019, 3023, 3037, 3067, 3259, 3323, 3517, 3533, 3547, 3581, 3583, 4027, 4091, 4093, 48079, 48091, 48383, 48571, 48589, 49103, 49117, 52189, 52223, 52667, 52733, 53197, 56267, 56269, 56509, 56527, 56543, 56767, 56779, 56783, 56827, 64717, 64763, 769019, 769231, 769243, 769247, 769469, 769487
Offset: 1
Examples
The first few terms and their hexadecimal representations (written with least significant "digit" on the left) are: 11, [B] 13, [D] 191, [F, B] 223, [F, D] 251, [B, F] 3019, [B, C, B] 3023, [F, C, B] 3037, [D, D, B] 3067, [B, F, B] 3259, [B, B, C] 3323, [B, F, C] ...
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..21472 (all terms with <= 9 hexadecimal digits; terms 1..166 from N. J. A. Sloane)
Crossrefs
Cf. A140969.
Programs
-
Python
from sympy import isprime, primerange def ok(p): return set(hex(p)[2:]) <= set("bcdf") def aupton(limit): return [p for p in primerange(1, limit+1) if ok(p)] print(aupton(769487)) # Michael S. Branicky, Nov 13 2021
-
Python
# faster version for going to large numbers from sympy import isprime from itertools import product def auptohd(m): # terms up to m hex digits return [t for t in (int("".join(p), 16) for d in range(1, m+1) for p in product("bcdf", repeat=d)) if isprime(t)] print(auptohd(7)) # Michael S. Branicky, Nov 13 2021
Comments