cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238125 Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having exactly k flat steps, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 9, 8, 6, 2, 1, 0, 22, 24, 17, 9, 3, 1, 0, 59, 70, 57, 29, 13, 3, 1, 0, 170, 224, 191, 108, 49, 17, 4, 1, 0, 516, 744, 663, 399, 201, 69, 23, 4, 1, 0, 1658, 2588, 2415, 1573, 802, 322, 104, 28, 5, 1, 0, 5583, 9317, 9108, 6249, 3343, 1408, 510, 137, 35, 5, 1, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 21 2014

Keywords

Comments

Also number of standard Young tableaux with n cells and exactly k successions. A succession is a pair of cells (v, v+1) lying in the same row.
T(2n,n) gives A241785.
Row sums are A000085.

Examples

			Triangle starts:
00:     1;
01:     1,     0;
02:     1,     1,     0;
03:     2,     1,     1,     0;
04:     4,     3,     2,     1,     0;
05:     9,     8,     6,     2,     1,    0;
06:    22,    24,    17,     9,     3,    1,    0;
07:    59,    70,    57,    29,    13,    3,    1,   0;
08:   170,   224,   191,   108,    49,   17,    4,   1,   0;
09:   516,   744,   663,   399,   201,   69,   23,   4,   1,  0;
10:  1658,  2588,  2415,  1573,   802,  322,  104,  28,   5,  1, 0;
11:  5583,  9317,  9108,  6249,  3343, 1408,  510, 137,  35,  5, 1, 0;
12: 19683, 34924, 35695, 25642, 14368, 6440, 2411, 751, 189, 42, 6, 1, 0;
...
		

Programs

  • Maple
    b:= proc(n, v, l) option remember; `if`(n<1, 1, expand(
          add(`if`(i=1 or l[i-1]>l[i], `if`(i=v, x, 1)*
          b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+
          b(n-1, nops(l)+1, [l[], 1])))
        end:
    T:= n-> seq(coeff(b(n-1, 1, [1]), x, i), i=0..n):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i == 1 || l[[i-1]] > l[[i]], If[i == v, x, 1]*b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; T[n_] := Table[Coefficient[b[n-1, 1, {1}], x, i], {i, 0, n}]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *)