A238130 Triangle read by rows: T(n,k) is the number of compositions into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=n.
1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 3, 4, 1, 0, 0, 2, 10, 4, 0, 0, 0, 4, 12, 14, 2, 0, 0, 0, 2, 22, 29, 10, 1, 0, 0, 0, 4, 26, 56, 36, 6, 0, 0, 0, 0, 3, 34, 100, 86, 31, 2, 0, 0, 0, 0, 4, 44, 148, 200, 99, 16, 1, 0, 0, 0, 0, 2, 54, 230, 374, 278, 78, 8, 0, 0, 0, 0, 0, 6, 58, 322, 680, 654, 274, 52, 2, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle starts: 00: 1, 01: 1, 0, 02: 2, 0, 0, 03: 2, 2, 0, 0, 04: 3, 4, 1, 0, 0, 05: 2, 10, 4, 0, 0, 0, 06: 4, 12, 14, 2, 0, 0, 0, 07: 2, 22, 29, 10, 1, 0, 0, 0, 08: 4, 26, 56, 36, 6, 0, 0, 0, 0, 09: 3, 34, 100, 86, 31, 2, 0, 0, 0, 0, 10: 4, 44, 148, 200, 99, 16, 1, 0, 0, 0, 0, 11: 2, 54, 230, 374, 278, 78, 8, 0, 0, 0, 0, 0, 12: 6, 58, 322, 680, 654, 274, 52, 2, 0, 0, 0, 0, 0, 13: 2, 74, 446, 1122, 1390, 814, 225, 22, 1, 0, 0, 0, 0, 0, ... Row 5 is [2, 10, 4, 0, 0, 0] because in the 16 compositions of 5 ##: [composition] no. of changes 01: [ 1 1 1 1 1 ] 0 02: [ 1 1 1 2 ] 1 03: [ 1 1 2 1 ] 2 04: [ 1 1 3 ] 1 05: [ 1 2 1 1 ] 2 06: [ 1 2 2 ] 1 07: [ 1 3 1 ] 2 08: [ 1 4 ] 1 09: [ 2 1 1 1 ] 1 10: [ 2 1 2 ] 2 11: [ 2 2 1 ] 1 12: [ 2 3 ] 1 13: [ 3 1 1 ] 1 14: [ 3 2 ] 1 15: [ 4 1 ] 1 16: [ 5 ] 0 there are 2 with no changes, 10 with one change, and 4 with two changes.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, v) option remember; `if`(n=0, 1, expand( add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n))) end: T:= n-> seq(coeff(b(n, 0), x, i), i=0..n): seq(T(n), n=0..14);
-
Mathematica
b[n_, v_] := b[n, v] = If[n == 0, 1, Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]; T[n_] := Table[Coefficient[b[n, 0], x, i], {i, 0, n}]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)
Comments