cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238134 Number of primes p < n with q = floor((n-p)/4) and prime(q) - q + 1 both prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 6, 5, 5, 5, 3, 4, 6, 6, 7, 6, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 4, 4, 6, 6, 4, 5, 5, 5, 7, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 6, 8, 8, 8, 7, 7, 7, 4, 4, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 03 2014

Keywords

Comments

Conjecture: Let m > 0 and n > 2*m + 1 be integers. If m = 1 and 2 | n, or m = 3 and n is not congruent to 1 modulo 6, or m = 2, 4, 5, ..., then there is a prime p < n such that q = floor((n-p)/m) and prime(q) - q + 1 are both prime.
In the cases m = 1, 2, this gives refinements of Goldbach's conjecture and Lemoine's conjecture (see also A235189). For m > 2, the conjecture is completely new.
See also A238701 for a similar conjecture involving primes q with q^2 - 2 also prime.

Examples

			 a(29) = 3 since 7, floor((29-7)/4) = 5 and prime(5) - 5 + 1 = 11 - 4 = 7 are all prime; 17, floor((29-17)/4) = 3 and prime(3) - 3 + 1 = 5 - 2 = 3 are all prime; 19, floor((29-19)/4) = 2 and prime(2) - 2 + 1 = 3 - 1 = 2 are all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n+1]
    a[n_]:=Sum[If[PQ[Floor[(n-Prime[k])/4]],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,80}]