A238134 Number of primes p < n with q = floor((n-p)/4) and prime(q) - q + 1 both prime.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 6, 5, 5, 5, 3, 4, 6, 6, 7, 6, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 4, 4, 6, 6, 4, 5, 5, 5, 7, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 6, 8, 8, 8, 7, 7, 7, 4, 4, 4, 4
Offset: 1
Keywords
Examples
a(29) = 3 since 7, floor((29-7)/4) = 5 and prime(5) - 5 + 1 = 11 - 4 = 7 are all prime; 17, floor((29-17)/4) = 3 and prime(3) - 3 + 1 = 5 - 2 = 3 are all prime; 19, floor((29-19)/4) = 2 and prime(2) - 2 + 1 = 3 - 1 = 2 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
PQ[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n+1] a[n_]:=Sum[If[PQ[Floor[(n-Prime[k])/4]],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,80}]
Comments