cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238138 Let p(k) be the k-th prime of the form m^2 + 1. Sequence lists the numbers k such that each of the prime divisors of the composite numbers of the form m^2 + 1 between p(k) and p(k+1) is also a divisor of some m^2 + 1 < p(k).

Original entry on oeis.org

62, 149, 257, 281, 286, 365, 403, 418, 526, 534, 573, 577, 579, 712, 744, 825, 849, 877, 973, 992, 1016, 1106, 1191, 1243, 1251, 1257, 1286, 1341, 1388, 1440, 1487, 1526, 1636, 1656, 1841, 1844, 1846, 1953, 1966, 2028, 2108, 2120, 2142, 2225, 2272, 2392, 2409
Offset: 1

Views

Author

Michel Lagneau, Feb 18 2014

Keywords

Examples

			62 is in the sequence:
436^2 + 1 = 190097 is the 62nd prime of the form m^2 + 1;
437^2 + 1 = 190970 = 2 * 5 * 13^2 * 113;
438^2 + 1 = 191845 = 5 * 17 * 37 * 61;
439^2 + 1 = 192722 = 2 * 173 * 557;
440^2 + 1 = 193601 is the 63rd prime of the form m^2 + 1;
and each of the prime divisors of 437^2 + 1, 438^2 + 1, and 439^2 + 1 is also a divisor of some m^2 + 1 < 436^2 + 1:
    1^2 + 1 = 2,
    3^2 + 1 = 2 * 5,
    4^2 + 1 = 17,
    5^2 + 1 = 2 * 13,
    6^2 + 1 = 37,
   11^2 + 1 = 2 * 61,
   15^2 + 1 = 2 * 113,
   80^2 + 1 = 37 * 173,
  118^2 + 1 = 5^2 * 557.
		

Crossrefs

Programs

  • Maple
    with(numtheory):lst:={}: lst2:={}:T:=array(1..2000000):kk:=1:k:=0:for n from 2 by 2 to 200000 do: p:=n^2+1:if type(p, prime)=true then k:=k+1:T[k]:=p:else fi:od:for i from 1 to k do:lst1:={}:a:=sqrt(T[i]-1):b:=sqrt(T[i+1]-1):for j from a+1 to b-1 do:y:=factorset(j^2+1):lst1:=lst1 union y:od:lst1:=lst1 minus lst: if lst1<>{} then kk:=kk+1:lst:=lst union {lst1[1]}:else kk:=kk+1: printf(`%d, `,kk):fi:od:

Extensions

Edited by Jon E. Schoenfield, Sep 09 2017

A234739 Largest prime divisor of all composite numbers of the form k^2+1 between two consecutive primes of the same form.

Original entry on oeis.org

5, 13, 41, 61, 113, 181, 97, 313, 613, 761, 1301, 89, 2113, 2521, 3121, 3613, 1693, 5101, 1277, 557, 7321, 601, 1613, 8581, 10513, 2161, 4621, 12641, 14281, 15313, 6337, 16381, 20201, 21013, 21841, 24421, 5153, 26681, 11329, 30013, 977, 13313, 34061, 7129
Offset: 1

Views

Author

Michel Lagneau, Dec 30 2013

Keywords

Comments

Or, largest of all prime factors of composite numbers in A002522 between two consecutive primes A002496(n) and A002496(n+1).

Examples

			181 is in the sequence because the composites between the two primes A002496(7)= 16^2+1 = 257 and A002496(8)= 20^2+1=401 are: 17^2+1= 2*5*29; 18^2+1 = 5*5*13; 19^2+1=2*181 and the largest prime divisor is 181, so a(5)=181.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..111):k:=0:for n from 2 by 2 to 1000 do: p:=n^2+1:if type(p,prime)=true then k:=k+1:T[k]:=p:else fi:od:for i from 1 to k do:d0:=0:a:=sqrt(T[i]-1):b:=sqrt(T[i+1]-1):for j from a+1 to b-1 do:y:=factorset(j^2+1):n1:=nops(y):d:=y[n1]:if d>d0 then d0:=d:else fi:od: printf(`%d, `,d0):od:
Showing 1-2 of 2 results.