A237686 The number of P-positions in the game of Nim with up to four piles, allowing for piles of zero, such that the total number of objects in all piles doesn't exceed 2n.
1, 7, 14, 50, 63, 105, 148, 364, 413, 491, 546, 798, 883, 1141, 1400, 2696, 2961, 3255, 3382, 3850, 3983, 4313, 4620, 6132, 6469, 6979, 7322, 8870, 9387, 10941, 12496, 20272, 21833, 23423, 23982, 25746, 26167, 26929, 27524, 30332, 30933
Offset: 0
Keywords
Examples
There is a position (0,0,0,0) with a total of zero. There are 6 positions with a total of 2 that are permutations of (0,0,1,1). Therefore, a(1)=7.
Links
- T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 16 and J. Int. Seq. 17 (2014) # 14.7.8.
Programs
-
Mathematica
Table[Length[ Select[Flatten[ Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0, a}], 2], Total[#] <= a &]], {a, 0, 100, 2}]
Formula
a(2n+1) = 7a(n) + a(n-1), a(2n+2) = a(n+1) + 7a(n).
Comments