cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238159 Number of compositions of n with exactly one part equal to 1 or exactly one part equal to 2.

Original entry on oeis.org

0, 1, 1, 2, 5, 11, 15, 35, 70, 124, 234, 447, 827, 1529, 2834, 5222, 9587, 17573, 32137, 58641, 106821, 194280, 352824, 639913, 1159238, 2097759, 3792375, 6849778, 12361822, 22292405, 40172089, 72344671, 130203409, 234200988, 421037335, 756538955, 1358728300
Offset: 0

Views

Author

Geoffrey Critzer, Feb 18 2014

Keywords

Examples

			a(4) = 5 because we have: 1+3, 3+1, 1+1+2, 1+2+1, 2+1+1.
		

Crossrefs

Cf. A006367 exactly one part equal to 1, A079662 exactly one part equal to 2 (with appropriate offset).

Programs

  • Mathematica
    nn=30;a=1/(1-(x/(1-x)-x));b=1/(1-(x/(1-x)-x^2));c=1/(1-(x/(1-x)-x-x^2));CoefficientList[Series[a^2x +b^2x^2-2 c^3x^3,{x,0,nn}],x]
    (* or *)
    Table[Length[Select[Level[Table[Select[Compositions[n,k],Count[#,0]==0&],{k,1,n}],{2}],Count[#,1]==1||Count[#,2]==1&]],{n,0,10}]

Formula

G.f.: x*A(x)^2 + x^2*B(x)^2 - 2*x^3*C(x)^3 where A(x)=1/(1 - (x/(1-x)-x)), B(x)=1/(1 - (x/(1-x)-x^2)), C(x)=1/(1 - (x/(1-x)-x-x^2)).
a(n) ~ c * n / (2^(n-1) * d^n), where c = 0.02749202171174083217... is the root of the equation -1 + 18*c + 552*c^2 + 4232*c^3 = 0 and d = 0.2849201454990266329... is the root of the equation -1 + 4*d - 4*d^2 + 8*d^3 = 0. - Vaclav Kotesovec, May 01 2014