A238181 Decimal expansion of sum_(n>=1) H(n)^2/n^3 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,3)).
1, 6, 5, 1, 9, 4, 2, 7, 9, 2, 7, 0, 4, 4, 9, 8, 6, 2, 3, 9, 6, 2, 6, 9, 3, 7, 6, 1, 1, 1, 4, 4, 9, 4, 0, 1, 6, 1, 1, 7, 6, 3, 1, 7, 5, 1, 5, 9, 6, 5, 6, 0, 6, 3, 3, 2, 1, 3, 8, 5, 2, 0, 9, 5, 6, 0, 8, 5, 9, 7, 5, 3, 0, 1, 0, 5, 3, 8, 0, 9, 8, 8, 2, 5, 7, 7, 6, 6, 5, 0, 0, 4, 2, 8, 2, 1, 7, 0, 6, 9
Offset: 1
Examples
1.6519427927044986239626937611144940161...
Links
- Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 24.
Programs
-
Mathematica
7/2*Zeta[5] - Zeta[2]*Zeta[3] // RealDigits[#, 10, 100]& // First
-
PARI
7/2*zeta(5) - zeta(2)*zeta(3) \\ Stefano Spezia, May 22 2025
Formula
7/2*zeta(5) - zeta(2)*zeta(3).