A238188 a(n) = 4*a(n-4) + 6*a(n-8) + 4*a(n-12) + a(n-16) for n>15, with the sixteen initial values as shown.
0, 0, 1, 1, 2, 2, 2, 3, 9, 11, 13, 15, 48, 57, 68, 81, 254, 302, 359, 427, 1342, 1596, 1898, 2257, 7093, 8435, 10031, 11929, 37488, 44581, 53016, 63047, 198132, 235620, 280201, 333217, 1047170, 1245302, 1480922, 1761123, 5534517, 6581687, 7826989, 9307911, 29251104, 34785621, 41367308
Offset: 0
Links
- Alexander Samokrutov, Table of n, a(n) for n = 0..91
- Alexander Samokrutov, The roots of the equation of the fourth degree
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,4,0,0,0,6,0,0,0,4,0,0,0,1).
Programs
-
Mathematica
LinearRecurrence[{0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 1}, {0, 0, 1, 1, 2, 2, 2, 3, 9, 11, 13, 15, 48, 57, 68, 81}, 60] (* Vincenzo Librandi, May 15 2015 *)
-
PARI
concat([0,0], Vec(x^2*(x^2+x+1)*(x^3-x^2+1)*(x^8-x^6+2*x^4-2*x^2-1) / (x^16+4*x^12+6*x^8+4*x^4-1) + O(x^100))) \\ Colin Barker, May 02 2015
Formula
G.f.: x^2*(x^2+x+1)*(x^3-x^2+1)*(x^8-x^6+2*x^4-2*x^2-1) / (x^16+4*x^12+6*x^8+4*x^4-1). - Colin Barker, May 02 2015
Comments