A238190 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 4 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3), read by rows.
1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 4, 1, 3, 8, 1, 4, 12, 3, 1, 4, 18, 8, 1, 5, 24, 22, 1, 5, 32, 40, 6, 1, 6, 40, 73, 22, 1, 6, 50, 112, 66, 1, 7, 60, 172, 146, 10, 1, 7, 72, 240, 292, 48, 1, 8, 84, 335, 516, 174, 1, 8, 98, 440, 860, 448, 20
Offset: 3
Examples
The first 13 rows of T(n,k) are: .\ k 0 1 2 3 4 5 n 3 1 1 4 1 1 5 1 2 6 1 2 2 7 1 3 4 8 1 3 8 9 1 4 12 3 10 1 4 18 8 11 1 5 24 22 12 1 5 32 40 6 13 1 6 40 73 22 14 1 6 50 112 66 15 1 7 60 172 146 10
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..974
- Christopher Hunt Gribble, C++ program
Crossrefs
Programs
-
Mathematica
T[n_, k_] := (2^k Binomial[n - 2k, k] + (Boole[EvenQ[k]] + Boole[OddQ[n] || EvenQ[k]] + Boole[k == 0]) 2^Quotient[k + 1, 2] Binomial[(n - 2k - Mod[n, 2])/2, Quotient[k, 2]])/4; Table[T[n, k], {n, 3, 20}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Oct 06 2017, after Andrew Howroyd *)
-
PARI
T(n,k)={(2^k*binomial(n-2*k,k) + ((k%2==0)+(n%2==1||k%2==0)+(k==0)) * 2^((k+1)\2)*binomial((n-2*k-(n%2))/2,k\2))/4} for(n=2,20,for(k=0,floor(n/3), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Extensions
Link to C++ program and xrefs updated by Christopher Hunt Gribble, Apr 25 2015
Terms a(51) and beyond from Andrew Howroyd, May 29 2017