A238238 Decimal expansion of the polar angle, in radians, of a cone which makes a golden-ratio cut of the full solid angle.
1, 3, 3, 2, 4, 7, 8, 8, 6, 4, 9, 8, 5, 0, 3, 0, 5, 1, 0, 2, 0, 8, 0, 0, 9, 7, 9, 1, 9, 5, 5, 5, 8, 5, 4, 4, 1, 3, 3, 4, 9, 8, 0, 2, 7, 7, 4, 5, 1, 8, 9, 5, 6, 8, 5, 6, 6, 2, 9, 4, 7, 6, 8, 5, 6, 0, 7, 9, 5, 7, 9, 7, 8, 7, 5, 8, 1, 1, 8, 5, 6, 3, 4, 1, 5, 8, 1
Offset: 1
Examples
1.3324788649850305102080097919555854413349802774518956856629476856...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Duane W. DeTemple, The Triangle of Smallest Perimeter which Circumscribes a Semicircle, The Fibonacci Quarterly, Vol. 30, No. 3 (1992), p. 274.
- Wikipedia, Solid angle.
Programs
-
Mathematica
RealDigits[ArcCos[2/GoldenRatio -1],10,120][[1]] (* Harvey P. Dale, Jul 05 2019 *)
-
PARI
acos(4/(1+sqrt(5))-1)
Formula
arccos(1-2*(1-1/phi)) = arccos(2/phi-1), with phi = A001622.
Comments