cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238244 A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 3.

Original entry on oeis.org

1, 4, 11, 36, 183, 1467, 19074, 400557, 13618941, 749041758, 66664716465, 9599719170963, 2236734566834382, 843248931696562017, 514381848334902830373, 507694884306549093578154, 810788730237558902444311941, 2095078078933852203916102055547
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2014

Keywords

Comments

Generally, sequence a(n) = Fibonacci(n)*a(n-1) + p, with a(1)=1 and fixed p, is asymptotic to c(p) * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where constant c(p) = A062073 * (p*A101689 - p + 1).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+3,a[1]==1},a,{n,1,20}]
    nxt[{n_,a_}]:={n+1,a*Fibonacci[n+1]+3}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 04 2024 *)

Formula

a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * (3*A101689-2) = 7.4996979520811499717534... is product of Fibonacci factorial constant (see A062073) and -2+3*sum_{n>=1} 1/product(A000045(k), k=1..n).