A238276 a(n) = (9*8^n - 2)/7.
1, 10, 82, 658, 5266, 42130, 337042, 2696338, 21570706, 172565650, 1380525202, 11044201618, 88353612946, 706828903570, 5654631228562, 45237049828498, 361896398627986, 2895171189023890, 23161369512191122, 185290956097528978, 1482327648780231826
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 8 + 1 = 10; a(2) = 1 + 8 + 64 + 8 + 1 = 82; a(3) = 1 + 8 + 64 + 512 + 64 + 8 + 1 = 658; etc.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (9, -8).
Crossrefs
Programs
-
Magma
[(9*8^n - 2)/7: n in [0..30]]; // Vincenzo Librandi, Feb 23 2014
-
Mathematica
Table[(9 8^n - 2)/7, {n, 0, 50}] (* Vincenzo Librandi, Feb 23 2014 *)
Formula
G.f.: (1+x)/((1-x)*(1-8*x)).
a(n) = 8*a(n-1) + 2, a(0) = 1.
a(n) = 9*a(n-1) - 8*a(n-2), a(0) = 1, a(1) = 10.
a(n) = Sum_{k=0..n} A112468(n,k)*9^k.
Extensions
Corrected by Vincenzo Librandi, Feb 23 2014
Comments