A238341 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with exactly k occurrences of the largest part, n>=0, 0<=k<=n.
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 1, 0, 1, 0, 12, 3, 0, 0, 1, 0, 23, 7, 1, 0, 0, 1, 0, 46, 13, 4, 0, 0, 0, 1, 0, 91, 25, 10, 1, 0, 0, 0, 1, 0, 183, 46, 21, 5, 0, 0, 0, 0, 1, 0, 367, 89, 39, 15, 1, 0, 0, 0, 0, 1, 0, 737, 175, 70, 35, 6, 0, 0, 0, 0, 0, 1, 0, 1478, 351, 125, 71, 21, 1, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle starts: 00: 1; 01: 0, 1; 02: 0, 1, 1; 03: 0, 3, 0, 1; 04: 0, 6, 1, 0, 1; 05: 0, 12, 3, 0, 0, 1; 06: 0, 23, 7, 1, 0, 0, 1; 07: 0, 46, 13, 4, 0, 0, 0, 1; 08: 0, 91, 25, 10, 1, 0, 0, 0, 1; 09: 0, 183, 46, 21, 5, 0, 0, 0, 0, 1; 10: 0, 367, 89, 39, 15, 1, 0, 0, 0, 0, 1; 11: 0, 737, 175, 70, 35, 6, 0, 0, 0, 0, 0, 1; 12: 0, 1478, 351, 125, 71, 21, 1, 0, 0, 0, 0, 0, 1; 13: 0, 2962, 710, 229, 131, 56, 7, 0, 0, 0, 0, 0, 0, 1; 14: 0, 5928, 1443, 435, 230, 126, 28, 1, 0, 0, 0, 0, 0, 0, 1, 15: 0, 11858, 2926, 859, 395, 253, 84, 8, 0, 0, 0, 0, 0, 0, 0, 1; ...
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Mathematica
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[, 0] = 0; Table[a[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* _Jean-François Alcover, Jan 19 2015, after Maple code in A243737 *)
Comments