A238345 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n where the k-th part is the first occurrence of a largest part, n>=1, 1<=k<=n.
1, 2, 0, 3, 1, 0, 5, 2, 1, 0, 8, 5, 2, 1, 0, 14, 9, 6, 2, 1, 0, 24, 18, 12, 7, 2, 1, 0, 43, 33, 25, 16, 8, 2, 1, 0, 77, 62, 49, 35, 21, 9, 2, 1, 0, 140, 115, 95, 73, 49, 27, 10, 2, 1, 0, 256, 215, 181, 148, 108, 68, 34, 11, 2, 1, 0, 472, 401, 346, 291, 230, 158, 93, 42, 12, 2, 1, 0, 874, 753, 657, 569, 470, 353, 228, 125, 51, 13, 2, 1, 0
Offset: 1
Examples
Triangle starts: 01: 1; 02: 2, 0; 03: 3, 1, 0; 04: 5, 2, 1, 0; 05: 8, 5, 2, 1, 0; 06: 14, 9, 6, 2, 1, 0; 07: 24, 18, 12, 7, 2, 1, 0; 08: 43, 33, 25, 16, 8, 2, 1, 0; 09: 77, 62, 49, 35, 21, 9, 2, 1, 0; 10: 140, 115, 95, 73, 49, 27, 10, 2, 1, 0; 11: 256, 215, 181, 148, 108, 68, 34, 11, 2, 1, 0; 12: 472, 401, 346, 291, 230, 158, 93, 42, 12, 2, 1, 0; 13: 874, 753, 657, 569, 470, 353, 228, 125, 51, 13, 2, 1, 0; 14: 1628, 1416, 1250, 1102, 943, 753, 533, 324, 165, 61, 14, 2, 1, 0; 15: 3045, 2673, 2380, 2126, 1866, 1558, 1188, 791, 453, 214, 72, 15, 2, 1, 0; ...
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
g:= proc(n, m) option remember; `if`(n=0, 1, add(g(n-j, min(n-j, m)), j=1..min(n, m))) end: h:= proc(n, t, m) option remember; `if`(n=0, 0, `if`(t=1, add(g(n-j, j), j=m+1..n), add(h(n-j, t-1, max(m, j)), j=1..n))) end: T:= (n, k)-> h(n, k, 0): seq(seq(T(n, k), k=1..n), n=1..15);
-
Mathematica
g[n_, m_] := g[n, m] = If[n == 0, 1, Sum[g[n-j, Min[n-j, m]], {j, 1, Min[n, m]}]]; h[n_, t_, m_] := h[n, t, m] = If[n == 0, 0, If[t == 1, Sum[g[n-j, j], {j, m+1, n}], Sum[h[n-j, t-1, Max[m, j]], {j, 1, n}]]]; T[n_, k_] := h[n, k, 0]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)
Comments