cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238349 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k parts p at position p (fixed points), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 3, 4, 1, 0, 0, 6, 7, 3, 0, 0, 0, 11, 16, 4, 1, 0, 0, 0, 22, 29, 12, 1, 0, 0, 0, 0, 42, 60, 23, 3, 0, 0, 0, 0, 0, 82, 120, 47, 7, 0, 0, 0, 0, 0, 0, 161, 238, 100, 12, 1, 0, 0, 0, 0, 0, 0, 316, 479, 198, 30, 1, 0, 0, 0, 0, 0, 0, 0, 624, 956, 404, 61, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1235, 1910, 818, 126, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

T(n*(n+3)/2,n) = A227682(n).
From Vaclav Kotesovec, Sep 07 2014: (Start)
In general, column k is asymptotic to c(k) * 2^n. The constants c(k) numerically:
c(0) = 0.144394047543301210639449860964615390044455952420342... = A048651/2
c(1) = 0.231997216225445223894202367545783700531838988546098... = c(0)*A065442
c(2) = 0.104261929557371534733906196116707679501974368826074...
c(3) = 0.017956317806894073430249112172514186063327165575720...
c(4) = 0.001343254222922697613125145839110293324517874530073...
c(5) = 0.000046459767012163920051487037952792359225887287888...
c(6) = 0.000000768651747857094917953943327540619110335556499...
c(7) = 0.000000006200599904985793344094393321042983316604040...
c(8) = 0.000000000024656652167851516076173236693314090168122...
c(9) = 0.000000000000048633746319332356416193899916110113745...
c(10)= 0.000000000000000047750743608910618576944191079881479...
c(20)= 1.05217230403079700467566...*10^(-63)
For big k is c(k) ~ m * 2^(-k*(k+1)/2), where m = 1/(4*c(0)) = 1/(2*A048651) = 1.7313733097275318...
(End)

Examples

			Triangle starts:
00:  1,
01:  0, 1,
02:  1, 1, 0,
03:  2, 1, 1, 0,
04:  3, 4, 1, 0, 0,
05:  6, 7, 3, 0, 0, 0,
06:  11, 16, 4, 1, 0, 0, 0,
07:  22, 29, 12, 1, 0, 0, 0, 0,
08:  42, 60, 23, 3, 0, 0, 0, 0, 0,
09:  82, 120, 47, 7, 0, 0, 0, 0, 0, 0,
10:  161, 238, 100, 12, 1, 0, 0, 0, 0, 0, 0,
11:  316, 479, 198, 30, 1, 0, 0, 0, 0, 0, 0, 0,
12:  624, 956, 404, 61, 3, 0, 0, 0, 0, 0, 0, 0, 0,
13:  1235, 1910, 818, 126, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,
14:  2449, 3817, 1652, 258, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15:  4864, 7633, 3319, 537, 30, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
From _Gus Wiseman_, Apr 03 2022: (Start)
Row n = 5 counts the following compositions (empty columns indicated by dots):
  (5)     (14)     (113)   .  .  .
  (23)    (32)     (122)
  (41)    (131)    (1211)
  (212)   (221)
  (311)   (1112)
  (2111)  (1121)
          (11111)
(End)
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Row sums are A011782.
The version for permutations is A008290.
The version with all zeros removed is A238350.
The version for reversed partitions is A238352.
The corresponding rank statistic is A352512, nonfixed A352513.
The version for nonfixed points is A352523, A352520 (k=1).
Below: comps = compositions, first = column k=0, stat = rank statistic.
- A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
- A352522 counts comps by weak nonexcedances, first A238874, stat A352515.
- A352524 counts comps by strong excedances, first A008930, stat A352516.
- A352525 counts comps by weak excedances, A177510 (k=1), stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, expand(
           add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]==k&]],{n,0,9},{k,0,n}] (* Gus Wiseman, Apr 03 2022 *)