A238350 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k parts p at position p (fixed points), n>=0, 0<=k<=A003056(n).
1, 0, 1, 1, 1, 2, 1, 1, 3, 4, 1, 6, 7, 3, 11, 16, 4, 1, 22, 29, 12, 1, 42, 60, 23, 3, 82, 120, 47, 7, 161, 238, 100, 12, 1, 316, 479, 198, 30, 1, 624, 956, 404, 61, 3, 1235, 1910, 818, 126, 7, 2449, 3817, 1652, 258, 16, 4864, 7633, 3319, 537, 30, 1, 9676, 15252, 6686, 1083, 70, 1, 19267, 30491, 13426, 2205
Offset: 0
Examples
Triangle T(n,k) begins: 00 : 1; 01 : 0, 1; 02 : 1, 1; 03 : 2, 1, 1; 04 : 3, 4, 1; 05 : 6, 7, 3; 06 : 11, 16, 4, 1; 07 : 22, 29, 12, 1; 08 : 42, 60, 23, 3; 09 : 82, 120, 47, 7; 10 : 161, 238, 100, 12, 1; 11 : 316, 479, 198, 30, 1; 12 : 624, 956, 404, 61, 3; ...
References
- M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..500, flattened
- M. Archibald, A. Blecher, and A. Knopfmacher, Fixed Points in Compositions and Words, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, expand( add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n))) end: T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)): seq(T(n), n=0..20);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)