cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238353 Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with maximal ascent k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 2, 1, 1, 0, 0, 2, 6, 3, 2, 1, 1, 0, 0, 4, 6, 6, 2, 2, 1, 1, 0, 0, 3, 10, 6, 5, 2, 2, 1, 1, 0, 0, 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Comments

Reversed rows and also the columns converge to A002865 (setting A002865(0)=0).
Column k=0 is A000005 (n>=1), column k=1 is A237665.
Row sums are A000041.
Sum_{i=0..k} T(n,i) for k=0-9 gives: A000005, A034296, A224956, A238863, A238864, A238865, A238866, A238867, A238868, A238869.

Examples

			Triangle starts:
00:  1;
01:  1,  0;
02:  2,  0,  0;
03:  2,  1,  0,  0;
04:  3,  1,  1,  0,  0;
05:  2,  3,  1,  1,  0,  0;
06:  4,  3,  2,  1,  1,  0, 0;
07:  2,  6,  3,  2,  1,  1, 0, 0;
08:  4,  6,  6,  2,  2,  1, 1, 0, 0;
09:  3, 10,  6,  5,  2,  2, 1, 1, 0, 0;
10:  4, 11, 11,  6,  4,  2, 2, 1, 1, 0, 0;
11:  2, 16, 13, 10,  5,  4, 2, 2, 1, 1, 0, 0;
12:  6, 17, 19, 12,  9,  4, 4, 2, 2, 1, 1, 0, 0;
13:  2, 24, 24, 18, 11,  8, 4, 4, 2, 2, 1, 1, 0, 0;
14:  4, 27, 34, 22, 17, 10, 7, 4, 4, 2, 2, 1, 1, 0, 0;
15:  4, 35, 39, 33, 20, 15, 9, 7, 4, 4, 2, 2, 1, 1, 0, 0;
...
The 7 partitions of 5 and their maximal ascents are:
1:  [ 1 1 1 1 1 ]   0
2:  [ 1 1 1 2 ]   1
3:  [ 1 1 3 ]   2
4:  [ 1 2 2 ]   1
5:  [ 1 4 ]   3
6:  [ 2 3 ]   1
7:  [ 5 ]   0
There are 2 rows with 0 ascents, 3 with 1 ascent, 1 for ascents 2 and 3, giving row 5 of the triangle.
		

Crossrefs

Cf. A238354 (partitions by minimal ascent).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p->
          `if`(t=0 or t-i=0, p, add(coeff(p, x, j)*x^
          max(j, t-i), j=0..degree(p))))(b(n-i, i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))(b(n$2, 0)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, Function[{p}, If[t == 0 || t-i == 0, p, Sum[Coefficient[p, x, j]*x^ Max[j, t-i], {j, 0, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)

Formula

G.f. for column k>=1: sum(j>=1, q^j/(1-q^j) * (prod(i=1..j-1, (1-q^((k+1)*i))/(1-q^i) ) - prod(i=1..j-1, (1-q^(k*i))/(1-q^i) ) ) ), see the comment about the g.f. in A238863.