A238353 Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with maximal ascent k, n >= 0, 0 <= k <= n.
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 2, 1, 1, 0, 0, 2, 6, 3, 2, 1, 1, 0, 0, 4, 6, 6, 2, 2, 1, 1, 0, 0, 3, 10, 6, 5, 2, 2, 1, 1, 0, 0, 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0
Offset: 0
Examples
Triangle starts: 00: 1; 01: 1, 0; 02: 2, 0, 0; 03: 2, 1, 0, 0; 04: 3, 1, 1, 0, 0; 05: 2, 3, 1, 1, 0, 0; 06: 4, 3, 2, 1, 1, 0, 0; 07: 2, 6, 3, 2, 1, 1, 0, 0; 08: 4, 6, 6, 2, 2, 1, 1, 0, 0; 09: 3, 10, 6, 5, 2, 2, 1, 1, 0, 0; 10: 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0; 11: 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0; 12: 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0; 13: 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0; 14: 4, 27, 34, 22, 17, 10, 7, 4, 4, 2, 2, 1, 1, 0, 0; 15: 4, 35, 39, 33, 20, 15, 9, 7, 4, 4, 2, 2, 1, 1, 0, 0; ... The 7 partitions of 5 and their maximal ascents are: 1: [ 1 1 1 1 1 ] 0 2: [ 1 1 1 2 ] 1 3: [ 1 1 3 ] 2 4: [ 1 2 2 ] 1 5: [ 1 4 ] 3 6: [ 2 3 ] 1 7: [ 5 ] 0 There are 2 rows with 0 ascents, 3 with 1 ascent, 1 for ascents 2 and 3, giving row 5 of the triangle.
Links
- Joerg Arndt and Alois P. Heinz, Rows 0..140, flattened
Crossrefs
Cf. A238354 (partitions by minimal ascent).
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p-> `if`(t=0 or t-i=0, p, add(coeff(p, x, j)*x^ max(j, t-i), j=0..degree(p))))(b(n-i, i, i))))) end: T:= n-> (p-> seq(coeff(p, x, k), k=0..n))(b(n$2, 0)): seq(T(n), n=0..15);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, Function[{p}, If[t == 0 || t-i == 0, p, Sum[Coefficient[p, x, j]*x^ Max[j, t-i], {j, 0, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
Formula
G.f. for column k>=1: sum(j>=1, q^j/(1-q^j) * (prod(i=1..j-1, (1-q^((k+1)*i))/(1-q^i) ) - prod(i=1..j-1, (1-q^(k*i))/(1-q^i) ) ) ), see the comment about the g.f. in A238863.
Comments