A238354 Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with minimal ascent k, n >= 0, 0 <= k <= n.
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 8, 1, 1, 0, 1, 0, 0, 11, 2, 0, 1, 0, 1, 0, 0, 17, 2, 1, 0, 1, 0, 1, 0, 0, 23, 3, 1, 1, 0, 1, 0, 1, 0, 0, 33, 4, 2, 0, 1, 0, 1, 0, 1, 0, 0, 45, 5, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 63, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 84, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 114, 10, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 0
Examples
Triangle starts: 00: 1; 01: 1, 0; 02: 2, 0, 0; 03: 2, 1, 0, 0; 04: 4, 0, 1, 0, 0; 05: 5, 1, 0, 1, 0, 0; 06: 8, 1, 1, 0, 1, 0, 0; 07: 11, 2, 0, 1, 0, 1, 0, 0; 08: 17, 2, 1, 0, 1, 0, 1, 0, 0; 09: 23, 3, 1, 1, 0, 1, 0, 1, 0, 0; 10: 33, 4, 2, 0, 1, 0, 1, 0, 1, 0, 0; 11: 45, 5, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0; 12: 63, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0; 13: 84, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0; 14: 114, 10, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0; 15: 150, 13, 4, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0; ... The 11 partitions of 6 together with their minimal ascents are: 01: [ 1 1 1 1 1 1 ] 0 02: [ 1 1 1 1 2 ] 0 03: [ 1 1 1 3 ] 0 04: [ 1 1 2 2 ] 0 05: [ 1 1 4 ] 0 06: [ 1 2 3 ] 1 07: [ 1 5 ] 4 08: [ 2 2 2 ] 0 09: [ 2 4 ] 2 10: [ 3 3 ] 0 11: [ 6 ] 0 There are 8 partitions of 6 with min ascent 0, 1 with min ascents 1, 2, and 4, giving row 6 of the triangle: 8, 1, 1, 0, 1, 0, 0.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Cf. A238353 (partitions by maximal ascent).
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1/x, `if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p->`if`(t=0, p, add(coeff( p, x, j)*x^`if`(j<0, t-i, min(j, t-i)), j=-1..degree(p))))(b(n-i, i, i))))) end: T:= n->(p->seq(coeff(p, x, k)+`if`(k=0, 1, 0), k=0..n))(b(n$2, 0)): seq(T(n), n=0..15);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1/x, If[i<1, 0, b[n, i-1, t]+If[i>n, 0, Function[{p}, If[t == 0, p, Sum[Coefficient[p, x, j]*x^If[j<0, t-i, Min[j, t-i]], {j, -1, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, k]+If[k == 0, 1, 0], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)
Comments