A238380 Numbers k such that the average of the divisors of k and k+1 is the same.
5, 14, 91, 1334, 1634, 2685, 3478, 5452, 9063, 13915, 16225, 20118, 20712, 33998, 42818, 47795, 64665, 79338, 84134, 103410, 106144, 109214, 111683, 122073, 123497, 133767, 166934, 170884, 203898, 224561, 228377, 267630, 289454, 383594, 384857, 391348, 440013
Offset: 1
Keywords
Examples
91 is a term since the average of the divisors of 91 and 92 is the same. Indeed, (1+7+13+91)/4 = (1+2+4+23+46+92)/6.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..6934 (terms < 5*10^12)
Crossrefs
Cf. A002961.
Programs
-
Mathematica
av[n_] := DivisorSigma[1,n]/DivisorSigma[0,n]; Select[Range[10^5], av[#] == av[# + 1] &] SequencePosition[Table[DivisorSigma[1,n]/DivisorSigma[0,n],{n,450000}],{x_,x_}][[All,1]] (* Harvey P. Dale, Jun 01 2022 *)
-
Python
from sympy import divisors from fractions import Fraction def aupto(limit): alst, prev_divavg = [], 1 for n in range(2, limit+2): divs = divisors(n) divavg = Fraction(sum(divs), len(divs)) if divavg == prev_divavg: alst.append(n-1) prev_divavg = divavg return alst print(aupto(440013)) # Michael S. Branicky, May 14 2021
Comments