cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238394 Number of partitions of n that sorted in increasing order do not contain a part k in position k.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 9, 12, 13, 17, 22, 28, 34, 42, 48, 59, 71, 88, 106, 130, 151, 181, 210, 250, 295, 354, 417, 494, 577, 675, 780, 909, 1053, 1231, 1431, 1668, 1930, 2240, 2573, 2963, 3392, 3896, 4461, 5129, 5873, 6742, 7710, 8816, 10043, 11439
Offset: 0

Views

Author

Giovanni Resta, Feb 26 2014

Keywords

Comments

The definition forbids partitions with a part equal to 1, so the smallest possible part is 2, which however can appear at most once.
Note that considering partitions in standard decreasing order, we obtain A064428.

Examples

			a(6) = 3, because of the 11 partitions of 6 only 3 do not contain a 1 in position 1, a 2 in position 2, or a 3 in position 3, namely (3,3), (2,4) and (6).
From _Joerg Arndt_, Mar 23 2014: (Start)
There are a(15) = 22 such partitions of 15:
01:  [ 2 3 4 6 ]
02:  [ 2 3 5 5 ]
03:  [ 2 3 10 ]
04:  [ 2 4 4 5 ]
05:  [ 2 4 9 ]
06:  [ 2 5 8 ]
07:  [ 2 6 7 ]
08:  [ 2 13 ]
09:  [ 3 3 4 5 ]
10:  [ 3 3 9 ]
11:  [ 3 4 8 ]
12:  [ 3 5 7 ]
13:  [ 3 6 6 ]
14:  [ 3 12 ]
15:  [ 4 4 7 ]
16:  [ 4 5 6 ]
17:  [ 4 11 ]
18:  [ 5 5 5 ]
19:  [ 5 10 ]
20:  [ 6 9 ]
21:  [ 7 8 ]
22:  [ 15 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand(
           x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i)))))
        end:
    a:= n-> (p-> add(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 26 2014
  • Mathematica
    a[n_] := Length@ Select[ IntegerPartitions@n, 0 < Min@ Abs[ Reverse@# - Range@ Length@#] &]; Array[a, 30]
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]]; a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, n]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)

Formula

a(n) + A238395(n) = p(n) = A000041(n).
a(n) = Sum_{k>=0} A238406(n,k). - Alois P. Heinz, Feb 26 2014
a(n) = A238352(n,0). - Alois P. Heinz, Jun 08 2014