A238394 Number of partitions of n that sorted in increasing order do not contain a part k in position k.
1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 9, 12, 13, 17, 22, 28, 34, 42, 48, 59, 71, 88, 106, 130, 151, 181, 210, 250, 295, 354, 417, 494, 577, 675, 780, 909, 1053, 1231, 1431, 1668, 1930, 2240, 2573, 2963, 3392, 3896, 4461, 5129, 5873, 6742, 7710, 8816, 10043, 11439
Offset: 0
Keywords
Examples
a(6) = 3, because of the 11 partitions of 6 only 3 do not contain a 1 in position 1, a 2 in position 2, or a 3 in position 3, namely (3,3), (2,4) and (6). From _Joerg Arndt_, Mar 23 2014: (Start) There are a(15) = 22 such partitions of 15: 01: [ 2 3 4 6 ] 02: [ 2 3 5 5 ] 03: [ 2 3 10 ] 04: [ 2 4 4 5 ] 05: [ 2 4 9 ] 06: [ 2 5 8 ] 07: [ 2 6 7 ] 08: [ 2 13 ] 09: [ 3 3 4 5 ] 10: [ 3 3 9 ] 11: [ 3 4 8 ] 12: [ 3 5 7 ] 13: [ 3 6 6 ] 14: [ 3 12 ] 15: [ 4 4 7 ] 16: [ 4 5 6 ] 17: [ 4 11 ] 18: [ 5 5 5 ] 19: [ 5 10 ] 20: [ 6 9 ] 21: [ 7 8 ] 22: [ 15 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from Giovanni Resta)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand( x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i))))) end: a:= n-> (p-> add(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(a(n), n=0..70); # Alois P. Heinz, Feb 26 2014
-
Mathematica
a[n_] := Length@ Select[ IntegerPartitions@n, 0 < Min@ Abs[ Reverse@# - Range@ Length@#] &]; Array[a, 30] b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]]; a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, n]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
Formula
a(n) = Sum_{k>=0} A238406(n,k). - Alois P. Heinz, Feb 26 2014
a(n) = A238352(n,0). - Alois P. Heinz, Jun 08 2014
Comments