cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238404 Number of ways a prime from A087054 can be decomposed as a sum of the form p*q+q*r+r*p where p, q and r are distinct primes (p < q < r).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 4, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 8, 1, 1, 2, 3, 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 4, 3, 1, 3, 1, 1, 4, 1, 1, 3, 2, 4, 1, 1, 3, 1, 1, 2, 1, 3, 2, 2, 1, 1, 3, 2, 5, 1, 1, 7, 8, 1, 3, 4, 1, 6, 3, 2, 12, 1, 1, 1, 1, 5, 2, 1, 9, 1, 1, 1, 2, 1, 5, 1, 2, 1, 3, 3, 1, 2, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 26 2014

Keywords

Examples

			A087054(5) = 71 = 3*5 + 5*7 + 7*3 = 2*3 + 3*13 + 13*2, therefore a(5) = 2.
		

Crossrefs

Programs

  • Mathematica
    nn = 100; A087854 = Take[Select[ Union[Total[Times @@@ Subsets[#, {2}]] & /@ Subsets[Prime[Range[nn]], {3}]], PrimeQ], nn]; r[n_, p_] := Reduce[p < q < r && p*q+q*r+r*p == n, {q, r}, Primes]; a[n_] := (For[cnt = 0; p = 2, p <= Ceiling[(n-6)/5], p = NextPrime[p], rnp = r[n, p]; If[rnp =!= False, Which[rnp[[0]] === And, Print["n = ", n, " ", {p, q, r} /. ToRules[rnp]]; cnt++, rnp[[0]] === Or, Print["n = ", n, " ", {p, q, r} /. {ToRules[rnp]}]; cnt += Length[rnp], True, Print["error: n = ", n, " ", rnp]]]]; cnt); Reap[Do[ap = a[p]; If[ap > 0, Sow[ap]], {p, A087854}]][[2, 1]] (* after Harvey P. Dale *)