A238414 Triangle read by rows: T(n,k) is the number of trees with n vertices having maximum vertex degree k (n>=1, 0<=k<=n-1).
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 5, 3, 1, 1, 0, 0, 1, 10, 7, 3, 1, 1, 0, 0, 1, 17, 17, 7, 3, 1, 1, 0, 0, 1, 36, 38, 19, 7, 3, 1, 1, 0, 0, 1, 65, 93, 45, 19, 7, 3, 1, 1, 0, 0, 1, 134, 220, 118, 47, 19, 7, 3, 1, 1, 0, 0, 1, 264, 537, 296, 125, 47, 19, 7, 3, 1, 1
Offset: 1
Examples
Row n=4 is T(4,2)=1,T(4,3)=1; indeed, the maximum vertex degree in the path P[4] is 2, while in the star S[4] it is 3. Triangle starts: 1; 0, 1; 0, 0, 1; 0, 0, 1, 1; 0, 0, 1, 1, 1; 0, 0, 1, 3, 1, 1; 0, 0, 1, 5, 3, 1, 1; 0, 0, 1, 10, 7, 3, 1, 1; 0, 0, 1, 17, 17, 7, 3, 1, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree
Crossrefs
Programs
-
Maple
MI := [25, 27, 30, 35, 36, 40, 42, 48, 49, 56, 64]: with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then max(a(pi(n)), 1+bigomega(pi(n))) else max(a(r(n)), a(s(n)), bigomega(r(n))+bigomega(s(n))) end if end proc: g := add(x^a(MI[j]), j = 1 .. nops(MI)): seq(coeff(g, x, q), q = 2 .. 6);
-
PARI
\\ Here V(n, k) gives column k of A144528. MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))} V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)} M(n, m=n)={my(v=vector(m, k, V(n,k-1)[2..1+n]~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))} { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020
Formula
Extensions
Columns k=0..1 inserted by Andrew Howroyd, Dec 18 2020
Comments