cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238416 Triangle read by rows: T(n,k) is the number of trees with n vertices having k vertices of degree 2 (n>=2, 0 <= k <= n - 2).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 3, 0, 1, 4, 4, 7, 3, 4, 0, 1, 5, 9, 10, 12, 5, 5, 0, 1, 10, 15, 25, 20, 22, 6, 7, 0, 1, 14, 31, 46, 54, 38, 34, 9, 8, 0, 1, 26, 57, 103, 111, 114, 65, 53, 11, 10, 0, 1, 42, 114, 204, 267, 250, 212, 108, 76, 15, 12, 0, 1, 78, 219, 440, 583, 644, 502, 383, 167, 110, 18, 14, 0, 1
Offset: 2

Views

Author

Emeric Deutsch, Mar 05 2014

Keywords

Comments

Sum of entries in row n is A000055(n) (number of trees with n vertices).
T(n,0) = A000014(n) (= number of series-reduced trees with n vertices).
The author knows of no formula for T(n,k). The entries have been obtained in the following manner, explained for row n = 7. In A235111 we find that the 11 (=A000055(7)) trees with 7 vertices have M-indices 25, 27, 30, 35, 36, 40, 42, 48, 49, 56, and 64 (the M-index of a tree t is the smallest of the Matula numbers of the rooted trees isomorphic, as a tree, to t). Making use of the formula in A182907 for the degree sequence polynomial, from these Matula numbers one obtains that these trees have 5, 3, 3, 3, 2, 2, 1, 1, 1, 0, and 0 degree-2 vertices, respectively; the frequencies of 0, 1, 2, 3, 4, and 5 are 2, 3, 2, 3, 0, and 1, respectively. See the Maple program.

Examples

			Row n=4 is T(4,0)=1,T(4,1)=0; T(4,2)=1; indeed, the star S[4] has no degree-2 vertex and the path P[4] has 2 degree-2 vertices.
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 1, 0, 1;
2, 1, 2, 0, 1;
2, 3, 2, 3, 0, 1;
4, 4, 7, 3, 4, 0, 1;
5, 9, 10, 12, 5, 5, 0, 1.
		

Crossrefs

Programs

  • Maple
    MI := [25, 27, 30, 35, 36, 40, 42, 48, 49, 56, 64]: with(numtheory): g := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(g(pi(n))+x^bigomega(pi(n))*(x-1)+x)) else sort(expand(g(r(n))+g(s(n))-x^bigomega(r(n))-x^bigomega(s(n))+x^bigomega(n))) end if end proc: a := proc (n) options operator, arrow: coeff(g(n), x, 2) end proc: G := add(x^a(MI[q]), q = 1 .. 11): seq(coeff(G, x, j), j = 0 .. 5);
  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    T(n)={my(u=[1]); for(n=2, n, u=concat([1], EulerMT(u) + (y-1)*u)); my(r=x*Ser(u), v=Vec(-x + r*(1 + x*(1-y)) + (substvec(r,[x,y],[x^2,y^2])*(1 - x*(1-y)) - r^2*(1 + x*(1-y)))/2)); [Vecrev(p) | p<-v]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 20 2020

Formula

G.f.: -x + R(x,y)*(1 + x*(1-y)) + (R(x^2,y^2)*(1 - x*(1-y)) - R(x,y)^2*(1 + x*(1-y)))/2 where R(x,y) satisfies R(x,y) = x*(R(x,y)*(y-1) + exp(Sum_{k>0} R(x^k,y^k)/k)). - Andrew Howroyd, Dec 20 2020