cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238432 Number of compositions of n avoiding equidistant 3-term arithmetic progressions.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 22, 41, 74, 133, 233, 400, 714, 1209, 2091, 3591, 6089, 10316, 17477, 29413, 49515, 82474, 137659, 228461, 377936, 623710, 1025445, 1680418, 2746242, 4474654, 7270430, 11774128, 19020802, 30640812, 49222427, 78857338, 126033488, 200872080
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 01 2014

Keywords

Examples

			The a(5) = 13 such compositions are:
01:  [ 1 1 2 1 ]
02:  [ 1 1 3 ]
03:  [ 1 2 1 1 ]
04:  [ 1 2 2 ]
05:  [ 1 3 1 ]
06:  [ 1 4 ]
07:  [ 2 1 2 ]
08:  [ 2 2 1 ]
09:  [ 2 3 ]
10:  [ 3 1 1 ]
11:  [ 3 2 ]
12:  [ 4 1 ]
13:  [ 5 ]
Note that the first and third composition contain the progression 1,1,1, but not in equidistant positions.
		

Crossrefs

Cf. A238433 (same for partitions).
Cf. A238569 (compositions avoiding any 3-term arithmetic progression).
Cf. A238423 (compositions avoiding three consecutive parts in arithmetic progression).
Cf. A238686.

Programs

  • Maple
    b:= proc(n, l) local j;
          for j from 2 to iquo(nops(l)+1, 2) do
          if l[1]-l[j]=l[j]-l[2*j-1] then return 0 fi od;
         `if`(n=0, 1, add(b(n-i, [i, l[]]), i=1..n))
        end:
    a:= n-> b(n, []):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{j}, For[j = 2, j <= Quotient[Length[l] + 1, 2], j++, If[l[[1]] - l[[j]] == l[[j]] - l[[2*j - 1]], Return[0]]]; If[n == 0, 1, Sum[b[n - i, Prepend[l, i]], {i, 1, n}]]];
    a[n_] := b[n, {}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *)