cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238439 Number of pairs (C,D) where C is a composition of u, D is a composition into distinct parts of v, and u + v = n.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 90, 182, 370, 748, 1526, 3060, 6156, 12344, 24748, 49654, 99392, 198966, 398166, 796658, 1593694, 3188584, 6377714, 12756888, 25515312, 51033092, 102068728, 204141754, 408292220, 816590586, 1633192578, 3266399030, 6532817194, 13065657556
Offset: 0

Views

Author

Joerg Arndt, Feb 27 2014

Keywords

Comments

This is one possible "overcomposition" analog of overpartitions (see A015128), as overpartitions are pairs of partitions and partitions into distinct parts.

Crossrefs

Cf. A236002.

Programs

  • Maple
    c:= proc(n) c(n):= ceil(2^(n-1)) end:
    b:= proc(n, i) b(n, i):= `if`(n=0, 1, `if`(i<1, 0,
        expand(b(n, i-1)+`if`(i>n, 0, x*b(n-i, i-1))))) end:
    d:= proc(n) d(n):= (p-> add(i!*coeff(p, x, i),
                i=0..degree(p)))(b(n$2)) end:
    a:= proc(n) a(n):= add(c(i)*d(n-i), i=0..n) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 28 2014
  • Mathematica
    With[{N=66}, s=((1-q)*Sum[q^(n*(n+1)/2)*n!/QPochhammer[q, q, n], {n, 0, N}] )/(1-2*q)+O[q]^N; CoefficientList[s, q]] (* Jean-François Alcover, Jan 17 2016, adapted from PARI *)
  • PARI
    N=66;  q='q+O('q^N);
    gfc=(1-q)/(1-2*q); \\ A011782
    gfd=sum(n=0, N, n!*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) ); \\ A032020
    Vec( gfc * gfd )

Formula

G.f.: C(x) * D(x) where C(x) and D(x) are respectively g.f. of A011782 and A032020.
a(n) ~ c * 2^n, where c = 1.521048571756660822618351147397515199378647451699288... . - Vaclav Kotesovec, Apr 13 2017