A238448 Smallest number m such that 2^m contains a string of n consecutive increasing digits in its decimal representation.
0, 7, 28, 135, 391, 992, 5837, 9485, 15975, 244178
Offset: 1
Examples
7 is the smallest exponent such that 2^7 contains two consecutive increasing digits (2^7 = 128). 28 is the smallest exponent such that 2^28 ( = 268435456) contains three consecutive increasing digits (456). a(6) = 992 from 2^992 = 418558049682135672245478534789063207250548754572474065407714995457168379_345\ 678_17284890561672488119458109166910841919797858872862722356017328064756\ 15116630782786940537040715228680107267602488727296075852403533779290461\ 69580757764357779904060393635270100437362409630553424235540298930640110\ 82834640896 - _N. J. A. Sloane_, Aug 12 2018
Crossrefs
Cf. A045875.
Programs
-
Mathematica
a[1]=0; a[n_] := Block[{k = 4, p = 16}, While[Max[ Length /@ Select[ Split@ Differences@ IntegerDigits@p, First@# == 1 &]] < n-1, k++; p *= 2]; k]; a/@ Range[7] (* Giovanni Resta, Feb 26 2014 *)
-
Python
def Str(x): for n in range(10**5): count = 0 i = 0 if len(str(2**n)) == x and x == 1: return n while i < len(str(2**n))-1: if int(str(2**n)[i]) == int(str(2**n)[i+1])-1: count += 1 i += 1 else: if count == x-1: return n else: count = 0 i += 1 if count == x-1: return n x = 1 while x < 50: print(Str(x)) x += 1
Extensions
a(8)-a(10) from Giovanni Resta, Feb 26 2014
Definition and examples corrected ("integers" changed to "digits") by N. J. A. Sloane, Aug 12 2018
Comments