cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238452 Second column of the extended Catalan triangle A189231.

Original entry on oeis.org

0, 1, 2, 2, 8, 5, 30, 14, 112, 42, 420, 132, 1584, 429, 6006, 1430, 22880, 4862, 87516, 16796, 335920, 58786, 1293292, 208012, 4992288, 742900, 19315400, 2674440, 74884320, 9694845, 290845350, 35357670, 1131445440, 129644790, 4407922860, 477638700, 17194993200
Offset: 0

Views

Author

Peter Luschny, Mar 01 2014

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
      if n < 3 then return n fi;
      if n mod 2 = 0 then return n*a(n-1) fi;
      h := iquo(n,2); n*a(n-1)/(h*(h+2)) end:
    seq(a(n), n=0..36);
  • Mathematica
    t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] =
      t[n - 1, k - 1] + Mod[n - k, 2] t[n - 1, k] + t[n - 1, k + 1];
    a[n_] := t[n, 1];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2019 *)
  • Sage
    def A238452():
        a = 1; n = 2
        yield 0
        while True:
            yield a
            a *= n
            if is_odd(n):
                a /= (n//2*(n//2+2))
            n += 1
    a = A238452(); [next(a) for n in range(36)]

Formula

Definition: a(n) = binomial(n+1, floor(n/2)+1) / (floor(n/2)+2) if n is odd, and 2*binomial(n, floor(n/2)+1) otherwise.
a(n) = A189231(n, 1).
a(n) = A238762(n+1, n-1).
a(2*n) = A162551(n).
a(2*n+1) = A000108(n+1).
a(n) = A057977(n+1) - A057977(n)*((n+1) mod 2). - Peter Luschny, Aug 07 2016