A238452 Second column of the extended Catalan triangle A189231.
0, 1, 2, 2, 8, 5, 30, 14, 112, 42, 420, 132, 1584, 429, 6006, 1430, 22880, 4862, 87516, 16796, 335920, 58786, 1293292, 208012, 4992288, 742900, 19315400, 2674440, 74884320, 9694845, 290845350, 35357670, 1131445440, 129644790, 4407922860, 477638700, 17194993200
Offset: 0
Programs
-
Maple
a := proc(n) option remember; if n < 3 then return n fi; if n mod 2 = 0 then return n*a(n-1) fi; h := iquo(n,2); n*a(n-1)/(h*(h+2)) end: seq(a(n), n=0..36);
-
Mathematica
t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n - 1, k - 1] + Mod[n - k, 2] t[n - 1, k] + t[n - 1, k + 1]; a[n_] := t[n, 1]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2019 *)
-
Sage
def A238452(): a = 1; n = 2 yield 0 while True: yield a a *= n if is_odd(n): a /= (n//2*(n//2+2)) n += 1 a = A238452(); [next(a) for n in range(36)]